logo
Shenzhen Perfect Precision Product Co., Ltd.
製品
製品
> 製品 > CNCの回転部品 > Precision Engineering Components Industries

Precision Engineering Components Industries

プロダクト細部

証明: ISO9001,AS9100D,ISO13485,ISO45001,IATF16949,ISO14001,RoHS,CE etc.

支払及び船積みの言葉

最小注文数量: 1個

価格: $0.15-4.99

受渡し時間: 5-8日

支払条件: L/C、D/A、D/P、T/T、ウェスタンユニオン、マネーグラム

最もよい価格を得なさい
ハイライト:
スピードで書く:
10mb/s以上
プロセス:
ターニング、CNC加工
最大 の 粉砕 サイズ:
最大 の 粉砕 サイズ
形状モデル:
CNC部品
迅速 な 配送 時間:
3~15日
しわ性:
RA0.4
インターフェースの種類:
USB 3.0
サービス:
切断加工,CNC加工
deliveryTime:
注文サイズに応じて7〜20日
私たちのサービス:
ワンステップサービス
材料:
ステンレス / アルミニウム / 真鍮 / チタン / プラスチック
加工プロセス:
製粉するCNCの旋盤にかかる回転/
容量最小:
+-0.15mm
キーワード:
nc アルミ部品
種類 入手可能:
磨き ターニング 掘削 など
スピードで書く:
10mb/s以上
プロセス:
ターニング、CNC加工
最大 の 粉砕 サイズ:
最大 の 粉砕 サイズ
形状モデル:
CNC部品
迅速 な 配送 時間:
3~15日
しわ性:
RA0.4
インターフェースの種類:
USB 3.0
サービス:
切断加工,CNC加工
deliveryTime:
注文サイズに応じて7〜20日
私たちのサービス:
ワンステップサービス
材料:
ステンレス / アルミニウム / 真鍮 / チタン / プラスチック
加工プロセス:
製粉するCNCの旋盤にかかる回転/
容量最小:
+-0.15mm
キーワード:
nc アルミ部品
種類 入手可能:
磨き ターニング 掘削 など
Precision Engineering Components Industries
1 Research Method
1.1 Design Framework

The research follows a stepwise experimental layout to ensure full reproducibility. Each machining trial was performed using standardized toolpaths, identical tool geometry, and controlled environmental settings. Dimensional accuracy, surface roughness, and thermal variation were tracked throughout the process. Design considerations focused on three core elements: (a) stability of fixture systems under micro-deformation, (b) toolpath generation strategy, and (c) interaction between cutting speed and heat accumulation.

1.2 Data Sources

Data were collected from 240 machining samples produced across aluminum 6061-T6, stainless steel 304, and titanium Grade 5. Baseline geometry was measured using a calibrated CMM with 2 μm repeatability. Temperature data were monitored using embedded thermocouples placed near the cutting zone. All measurements were recorded automatically and stored in a unified dataset.

1.3 Tools and Models

A five-axis CNC machining center (12,000 rpm spindle) was used to run controlled tests. Surface-quality analysis relied on white-light interferometry. Statistical evaluation employed linear mixed-effect models to isolate material-related variance. The experimental setup allows complete replication, enabling independent verification of results.

2 Results and Analysis
2.1 Core Findings

Table 1 summarizes the tolerance results for three process strategies.

Table 1 Tolerance deviation across machining strategies
(Three-line table format applied)

Process Strategy Mean Deviation (μm) Standard Deviation (μm)
Fixed-feed milling 42 11
Adaptive-feed milling 34 9
Hybrid multi-axis milling 29 7

Adaptive feed control reduced deviation by 18%, while hybrid multi-axis processing achieved the highest stability across materials. Titanium samples showed the largest heat-driven deformation, with maximum temperature rise reaching 46°C, approximately twice that of aluminum.

2.2 Comparison with Existing Studies

Published research on multi-axis workflows often highlights efficiency improvements, yet few provide material-specific thermal drift measurements. The present results show consistent patterns aligning with earlier thermal-model predictions, but the new quantified relationship between toolpath orientation and heat conduction offers a clearer mechanism explaining the accuracy improvements.

2.3 Innovation Explained

Two innovations are supported by measurable evidence:

  • Adaptive feed strategies directly stabilize tool-load fluctuation, improving tolerance control.
  • Material-specific thermal maps help determine optimal toolpath direction to minimize deformation.

Both innovations emerge from controlled data rather than subjective interpretation.

3 Discussion
3.1 Interpretation of Results

Tolerance deviation is strongly affected by dynamic cutting-force variation. Adaptive-feed milling smooths these fluctuations, resulting in more consistent geometry. Toolpath orientation also modifies heat dissipation paths. Titanium’s low thermal conductivity drives higher thermal gradients, while aluminum distributes heat more evenly—explaining the differing deformation profiles.

3.2 Limitations

The experiments were carried out in a temperature-controlled workshop, which may differ from real-factory conditions where humidity, ambient temperature, or machine wear can alter performance. Only three materials were studied, limiting the generality of the conclusions.

3.3 Practical Implications

Factories producing aerospace, medical, and robotics components can apply these findings to stabilize high-precision batches. Adjusting fixing strategy and toolpath direction according to each alloy’s thermal behavior offers a feasible route to improving repeatability without significant equipment upgrades.

4 Conclusion

This study establishes a reproducible methodology for assessing machining strategies across common engineering alloys. Data indicate that adaptive feed control and optimized multi-axis toolpaths significantly reduce tolerance drift. Understanding material-specific heat-transfer characteristics further enhances dimensional stability. These insights support more predictable manufacturing outcomes and provide a foundation for expanding research into automated toolpath generation and real-time spindle-load feedback systems.

同様の製品